Semiconducting graphene nanoribbon retains band gap on amorphous or crystalline SiO2

نویسنده

  • M. Zubaer Hossain
چکیده

Related Articles Excitation of discrete and continuous spectrum for a surface conductivity model of graphene J. Appl. Phys. 110, 114305 (2011) Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects Appl. Phys. Lett. 99, 192102 (2011) The effect of doping on the energetics and quantum conductance in graphene nanoribbons with a metallocene adsorbate J. Chem. Phys. 135, 124708 (2011) The destruction of Landau levels in graphene nanoribbons by magnetic modulation J. Appl. Phys. 110, 063718 (2011) Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: An impossible compromise? J. Chem. Phys. 135, 104704 (2011)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfaces Within Graphene Nanoribbons

We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to det...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

Effect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon

Materials of the general form MX2 (transition metal dichalcogenides) have generated a lot of interest recently. They can form nanoribbons like graphene and such nanoribbons have versatile electronic structures and can be metallic or semiconducting by changing the edges of the ribbon. The electronic properties of such materials are not fully understood till now. In this paper we investigate one ...

متن کامل

Electronic structure and stability of semiconducting graphene nanoribbons.

We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons, several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a...

متن کامل

Electronic and transport properties of kinked graphene

Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011